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a b s t r a c t

In this article, we present a simple direct matrix method for analytically computing the
Jacobian of nonlinear algebraic equations that arise from the discretization of nonlinear
integro-differential equations. The method is based on a formulation of the discretized
equations in vector form using only matrix-vector products and component-wise opera-
tions. By applying simple matrix-based differentiation rules, the matrix form of the analyt-
ical Jacobian can be calculated with little more difficulty than required to compute
derivatives in single-variable calculus. After describing the direct matrix method, we pres-
ent numerical experiments demonstrating the computational performance of the method,
discuss its connection to the Newton–Kantorovich method and apply it to illustrative 1D
and 2D example problems from electrochemical transport.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

When numerically studying nonlinear integro-differential equations, it is often valuable to have knowledge of the Jaco-
bian for the discretized equations. For example, the Jacobian (either exact or approximate) is required during each iteration
of the classical formulation of Newton’s method. Unfortunately, calculation of the Jacobian can be a time-consuming and
error-prone procedure for both the computer and the scientific programmer.

In the past, limited processing power and memory inspired the development and use of many methods designed to avoid
computation of the full Jacobian. While Jacobian-free methods, such as the Newton–Krylov method [32] and Arnoldi
iteration [42], are beautiful and continue to be critical for very large computational science problems, solving scientifically
significant problems that are relatively large is now possible on modern workstations and laptops even if full Jacobians are
used (especially if high-order numerical schemes are employed). As a result, researchers whose primary focus is science (as
opposed to numerics) may find it more time effective to use simpler, classical numerical schemes in order to avoid having to
learn the nuances of Jacobian-free methods. In this context, it is beneficial to have an easy way to compute the Jacobian of
the discretized equations.

In this article, we present a simple direct matrix method for calculating analytical Jacobians of discretized, nonlinear
integro-differential equations. The direct matrix method produces the Jacobian for the discretized equations directly in
matrix form without requiring calculation of individual matrix elements. The essential idea is to first write the discretized,
integro-differential equation explicitly in terms of discrete operators (e.g. differentiation and quadrature matrices [7,21,41])
and then use simple matrix-based differentiation rules to calculate the Jacobian directly [9,11,12,14]. The key observation
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underlying this approach is that there is a tremendous amount of structure in the nonlinear algebraic equations that arise
from the discretization of nonlinear integro-differential equations. By taking advantage of this structure, the calculation of
analytical Jacobians is reduced to nearly the level of complexity required to compute derivatives of scalar, single-variable
functions.

Operator-based approaches for expressing and analyzing numerical methods for time-independent nonlinear differential
equations have been implicitly used by the scientific computing community for decades, especially in the context of the
Newton–Kantorovich and related methods [5,6,29]. However, a direct matrix approach for the discretized equations seems
to have been first formally described in one place by Chen who presented a collection of rules formulated in terms of spe-
cially defined matrix products [9,11,12]. Chen used his formulation of the method both to solve nonlinear partial differential
equations [11,13] and to develop several interesting theoretical results (e.g. stability analysis of numerical methods for non-
linear time-dependent problems). He also observed that when a nonlinear differential equation only has polynomial nonlin-
earities, there is a very close relationship between the discretized nonlinear differential equation and its Jacobian [9,10].

Mathematically, the present formulation of the direct matrix method is equivalent to Chen’s approach. However, rather
than introducing special matrix products, we rely solely on standard linear algebra operations augmented by component-
wise operations (e.g. the Hadamard or Schur product [24]). In addition, we have chosen to use MATLAB notation in our for-
mulation because of its prevalence in modern scientific computing. Working in MATLAB notation has the added benefit of
making it almost trivial to translate the analytical calculations into working numerical code.1

Another feature of our formulation, which is also present to some extent in [9], is the emphasis on the analogy between
calculation of Jacobians for discretized, nonlinear integro-differential equations and calculation of derivatives for scalar func-
tions of a single-variable. To help strengthen the analogy with single-variable calculus, we organize the operations required
to compute a Jacobian as a short list of simple differentiation rules.

This article is organized as follows. In the remainder of this section, we compare the direct matrix method with several
common methods for computing Jacobians. In Section 2, we present the direct matrix method, including a discussion of its
computational performance and its relation to the Newton–Kantorovich method. Finally, in Section 3, we demonstrate the
application of the direct matrix method to two examples (one 1D and one 2D) from the field of electrochemical transport.
Throughout our discussion, we will focus solely on collocation methods where the continuous and discrete forms of the inte-
gro-differential equation have essentially the same structure. However, it is important to recognize that the direct matrix
method can also be used for Galerkin methods by applying it directly to the weak-form of the problem.

1.1. Comparison with common methods for computing Jacobians

One common approach for obtaining the Jacobian of a discretized, nonlinear integro-differential equation is to compute it
numerically using finite differences of the grid function or expansion coefficient values [27,28]. Unfortunately, numerical
computation of the Jacobian can be time consuming for some problems. Depending on the numerical method, it might be
possible to reduce the computational cost of a numerical Jacobian by taking advantage of the sparsity pattern in the Jacobian
[18,19,28], but determining the sparsity pattern can be complicated for nontrivial problems.

As an example, consider the Poisson–Nernst–Planck equations for electrochemical transport [2,16,37]:
1 Wit
2 Wh

operatio
@cþ
@t
¼ r � ðrcþ þ cþr/Þ ð1Þ

@c�
@t
¼ r � ðrc� � c�r/Þ ð2Þ

�r2/ ¼ �ðcþ � c�Þ; ð3Þ
where c� and / are the unknowns and � is a physical parameter. The first two of these are the Nernst–Planck equations for
ion transport and are simply conservation laws for cations and anions [34,37]. The last equation is the Poisson equation [26],
which provides closure for the Nernst–Planck equations (1)–(3) form a nonlinear parabolic system of partial differential
equations, which suggests that an implicit time-stepping scheme may be appropriate to numerically solve the equations.
Unfortunately, an implicit scheme for this set of equations requires that we solve a nonlinear system of equations for
cðnþ1Þ
� which depends on an auxiliary variable / which is in turn related to cðnþ1Þ

� through the Poisson equation. As a result,
to numerically compute the Jacobian for the resulting nonlinear system of equations for cðnþ1Þ

� , we must solve the Poisson
equation for each perturbation to the current iterate of cðnþ1Þ

� . Therefore, for a pseudospectral discretization of (1)–(3) using
N grid points, numerically computing the Jacobian requires OðN4Þ operations, which is much higher than the OðN2Þ elements
in the Jacobian.2

Using an analytical Jacobian is one way to avoid the computational cost associated with numerical Jacobians. In principle,
it is straightforward to derive the analytical Jacobian for the system of algebraic equations that arises when a nonlinear inte-
gro-differential equation is discretized. Index notation (also known as tensor notation) is perhaps the most common tech-
h today’s powerful desktop and laptop computers, MATLAB is quite capable of handling production-level research problems.
ile low-order discretization of the equations do not show this same disparity in the computation time and the number of elements (requiring OðN2Þ
ns for OðN2Þ elements), they typically require many more grid points to produce an accurate solution.



5528 K.T. Chu / Journal of Computational Physics 228 (2009) 5526–5538
nique used to calculate analytical Jacobians. The basic idea behind the index notation method is to write the discretized form
of the differential equation using index notation and then use tensor calculus to compute individual matrix elements in the
Jacobian. For example, for a finite-difference or pseudospectral discretization, the discretized equations can be written in the
form:
3 Car
4 Inte

discrete
Fiðu1;u2; . . . ;uNÞ ¼ 0 ð4Þ
for i ¼ 1;2; . . . ;N where ui and Fi are the value of the solution and the discretized differential equation at the ith grid point (or
more generally, the ith collocation point). Boundary conditions are included in this formulation by using the discretized
boundary conditions (rather than the integro-differential equation) at grid points on the boundary (or immediately adjacent
to if no grid points reside on the boundary).3 The ijth element of the Jacobian, J, for (4) is simply the partial derivative of Fi

with respect to uj : Jij ¼ @Fi=@uj. While simple and straightforward, index notation suffers from the disadvantage of being
somewhat tedious and error-prone. The main challenge in using index notation is keeping track of all of the indices when
writing out and computing partial derivatives of the discrete equations.

Automatic differentiation [23,25] offers an important alternative when exact Jacobians for the discretized equations are
desired. Because it generates code for computing the Jacobian directly from the code used to evaluate the residual, automatic
differentiation completely eliminates the possibility of human error when deriving the exact Jacobian and implementing it in
code. Recent developments have made automatic differentiation available in several common programming languages
(including MATLAB [38]). While useful, automatic differentiation still takes some effort to use and may not always generate
the most compact, efficient code. Active development in this area will certainly continue to improve the usability of auto-
matic differentiation software and the performance of generated code.

The direct matrix method has several advantages over the methods discussed in this section. First, the direct matrix
method yields a more accurate Jacobian than finite differences and generally in less time (see Section 2.4). Second, because
the method is based on simple differentiation rules, the calculation is straightforward and less prone to error than the index
notation approach. The differentiation rules also make it easier to calculate the Jacobian for differential equations which de-
pend on auxiliary variables, such as (1)–(3). From a programming perspective, calculation of the Jacobian directly in matrix
form facilitates implementation of numerical methods for nonlinear problems in languages that have built-in support for
matrix and vector operations (e.g. MATLAB and Fortran 95). Finally, having the Jacobian available in matrix form can be use-
ful for analyzing properties of numerical methods [9]. While it may be possible to convert the element-wise representation
of the Jacobian derived using index notation for simple problems, this step can be challenging for more complex problems.4

2. The direct matrix method

There are two basic ideas underlying the direct matrix method for calculating analytical Jacobians of discretized, integro-
differential equations. First, rather than writing the discretized, integro-differential equations at each of the collocation
points in terms of individual elements of the solution vector, we write the entire system of equations as a single vector equa-
tion expressed explicitly in terms of matrix-vector products and component-wise multiplication (e.g. Hadamard products).
Second, the analytical Jacobian for the discretized system of equations is computed directly in matrix form by using simple
differentiation rules that are reminiscent of those used to compute derivatives in single-variable calculus. In this section, we
present both of these ideas in detail. Towards the end of the section, we comment on the computational performance of the
direct matrix method and its relationship to the Newton–Kantorovich method [7].

As we shall see, the direct matrix method is simply a formulation of well-known mathematical results into a convenient
notation targeted towards numerical methods for integro-differential equations. However, it is important to recognize that
the power of the method is precisely the simplicity of the notation, not its theoretical foundations.

2.1. Matrix-vector representation of discretized equations

Writing the discretized, nonlinear integro-differential equation explicitly in terms of basic linear algebra and component-
wise algebraic operations is the initial step of the direct matrix method. Because of the similarities in the structure between
the discrete and continuous forms of the equations, the procedure is very straightforward. First, convert all differentiation
and integration operators into their discrete analogues. Since both of these operations are linear, they become multiplication
of vectors representing grid functions by differentiation and quadrature matrices, respectively:
du
dx
! D � û ð5ÞZ
udx! Q � û; ð6Þ
where the hat accent indicates a discretized field variable and D and Q are the differentiation and quadrature matrices asso-
ciated with the choice of computational grid.
e must be exercised when imposing boundary conditions, especially when using pseudospectral methods [22].
restingly, the conversion from element-wise to matrix representation of the Jacobian often reveals the close relationship between the Jacobian for the
equations and the underlying structure of the original integro-differential equation.
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Next, convert all point-wise algebraic operations and function evaluations in the continuous equations to component-wise
algebraic operations and function evaluations in the discrete equations. Some examples of the conversion process include:
u
dv
dx
! û � �ðD � v̂Þ ð7Þ

sinðuÞ ! sinðûÞ ð8Þ
u2 ! û � ^2 ð9Þ
expðuÞ ! expðûÞ: ð10Þ
In these examples, we have adopted the MATLAB convention of using :op to represent component-wise application of the
op operation. Also, note that we have abused notation for component-wise function evaluations – f ðûÞ represents the vector
ðf ðû1Þ; f ðû2Þ; . . . ; f ðûNÞÞ ð11Þ
not an arbitrary vector function of the entire solution vector û. Throughout our discussion, we will indicate component-wise
and general functions of û by using lowercase and uppercase variables, respectively.

It is important to emphasize that the matrix-vector representation is not restricted to scalar field equations or functions of
a single-variable. Handling vector equations is simple; vector equations may be treated as systems of equations and vector
operations may be expressed in component-wise form. Equations in multiple space dimensions may be handled by using
choosing an ordering for the grid points and defining differential/integral operators that are consistent with that ordering.
For example, computations on structured grids typically use a lexicographic ordering for the grid points and define differ-
ential/integral operators using Kronecker products [41].

2.1.1. Boundary conditions in multiple space dimensions
Imposing complicated boundary conditions for problems in multiple space dimensions can be challenging. To simplify

this process, it is often convenient to include discretized boundary conditions in the matrix-vector representation by first
breaking the full differentiation and integration matrices into multiple components. Each component is defined by the grid
points that it contributes to and the grid points it receives contributions from. For instance, it may be convenient to decom-
pose a differentiation matrix into four mutually exclusive components that: (1) use interior points and contribute to interior
points, (2) use interior points and contribute to boundary points, (3) use boundary points and contribute to interior points
and (4) use boundary points and contribute to boundary points. Splitting the differentiation and integration matrices into
separate components can be helpful when computing residuals and Jacobians for the different types of grid points in the
computational domain.

Deriving these components is straightforward using zeroth-order restriction and prolongation matrices [8]. A zeroth-or-
der restriction matrix is a matrix of zeros and ones which extracts a desired subset of elements from a vector. A zeroth-order
prolongation matrix is also a matrix of zeros and ones, but it injects the elements of a restricted vector into a desired subset
of the elements of a full-length vector. If fi1; i2; . . . ; img are the (flattened) indices of a subset of points from N grid points, then
the associated restriction matrix, R, would be an m� N matrix, R, with ones at the positions ð1; i1Þ; ð2; i2Þ; . . . ; ðm; imÞ. The
associated prolongation matrix, P, that injects a vector of length m into the positions fi1; i2; . . . ; img of a vector of length N
is simply the transpose of R: P ¼ RT .

To derive the differentiation matrix that uses values from grid points A and contributes to grid points B, we pre-multiply
by the restriction matrix for the set B and post-multiply by the prolongation matrix for set A:
DA!B ¼ RB � D � PA ¼ RB � D � RT
A: ð12Þ
Restricted integration matrices are derived in exactly the same manner.

2.2. Simple differentiation rules for computing exact Jacobians

Once the continuous equations have been put in a discretized form that is expressed explicitly in terms of matrix-vector
products and component-wise operations, the analytical Jacobian for the discretized equations can be calculated by applying
a few simple matrix-based differentiation rules. Because the differentiation rules are expressed completely in matrix form
without any reference to individual elements in the Jacobian matrix, they allow us to compute the Jacobian directly in matrix
form. Furthermore, the direct matrix method emphasizes the close connection between the continuous and discretized prob-
lem, which makes it easier for application-oriented researchers to derive Jacobians for numerical or analytical purposes.

In this section, we list these differentiation rules, which are essentially results from multivariate and matrix calculus ap-
plied specifically to the structure of discretized integro-differential equations. More precisely, they are the Fréchet deriva-
tives [7,33,40] of common expressions that appear in discretized nonlinear integro-differential equations. It is worth
reiterating that the value of these rules is their simplicity and systematic formulation.

2.2.1. Matrix-vector product rule
The Jacobian of a matrix-vector product (which corresponds to a linear operator acting on a function in the continuous

equations) is just the matrix itself:
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@

@û
ðA � ûÞ ¼ A: ð13Þ
For example, the Jacobian of the discretized derivative of u;D � û, is just D.

2.2.2. Diagonal rule
The Jacobian of a component-wise function f of a grid function û is a diagonal matrix with diagonal entries given by f 0ðûÞ:
@f ðûÞ
@û

¼ diagðf 0ðûÞÞ: ð14Þ
In essence, the diagonal rule is a way to use matrix notation to represent the fact that the differential in the ith component
of f ðûÞ only depends on the change in the ith component of û and is given by df ðûiÞ ¼ f 0ðûiÞdûi. As an example, the Jacobian of
sinðûÞ is diagðcosðûÞÞ.

2.2.3. Chain rules
The Jacobian of a matrix A times an arbitrary function, F, of all of the components of û is A times the Jacobian of F:
@

@û
ðA � FðûÞÞ ¼ A � @F

@û
ð15Þ
Similarly, the Jacobian of a function, FðûÞ, when its argument is a matrix A times the grid function û is the Jacobian of F
evaluated at A � û times A:
@

@û
FðA � ûÞ ¼ @F

@û
ðA � ûÞ

� �
� A ð16Þ
These rules are simply the chain rules for vector fields from multivariate calculus [1].
For the special but common case when F is a component-wise function FðûÞ ¼ f ðûÞ, (15) reduces to A times the diagonal

matrix with f 0ðûÞ on the diagonal:
@

@û
ðA � f ðûÞÞ ¼ A � diagðf 0ðûÞÞ ð17Þ
and (16) reduces to the diagonal matrix with f 0ðA � ûÞ on the diagonal times the matrix A:
@

@û
f ðA � ûÞ ¼ diagðf 0ðA � ûÞÞ � A ð18Þ
2.2.4. Product rule
To compute the Jacobian of a component-wise product of general functions F and G of a grid function û, we use the prod-

uct rule:
@

@û
ðFðûÞ � �GðûÞÞ ¼ diagðGðûÞÞ � @F

@û
þ diagðFðûÞÞ � @G

@û
: ð19Þ
The derivation of the product rule follows from the expression for the variation of the ith component of FðûÞGðûÞ
dðFiðûÞGiðûÞÞ ¼ GiðûÞ
@Fi

@û
dûþ FiðûÞ

@Gi

@û
dû ¼ GiðûÞ

@Fi

@û
þ FiðûÞ

@Gi

@û

� �
dû; ð20Þ
which yields the Jacobian
G1ðûÞð@F1=@ûÞ
G2ðûÞð@F2=@ûÞ

..

.

GNðûÞð@FN=@ûÞ

266664
377775þ

F1ðûÞð@G1=@ûÞ
F2ðûÞð@G2=@ûÞ

..

.

FNðûÞð@GN=@ûÞ

266664
377775 ¼ diagðGðûÞÞ � @F

@û
þ diagðFðûÞÞ � @G

@û
ð21Þ
2.3. Example Jacobian calculations

To demonstrate the simplicity of the direct matrix method, let us calculate the Jacobian for the discretized form of the
nonlinear function
f ðuÞ ¼ e2u du
dx
: ð22Þ
Converting this function to discrete form, we obtain
f ðûÞ ¼ ðe � ^ð2ûÞÞ � � ðD � ûÞ: ð23Þ
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Using the product rule (19), we find that the Jacobian is given by
J ¼ diagðD � ûÞ � @
@û
ðe � ^ð2ûÞÞ þ diagðe � ^ð2ûÞÞ � @ðD � ûÞ

@û
: ð24Þ
Then applying the diagonal rule (14) and the matrix-vector product rule (13), we find that
J ¼ 2diagðD � ûÞ � diagðe � ^ð2ûÞÞ þ diagðe � ^ð2ûÞÞ � D; ð25Þ
which can be simplified to
J ¼ 2diagððD � ûÞ � � ðe � ^ð2ûÞÞÞ þ diagðe � ^ð2ûÞÞ � D ð26Þ
by observing that diagðû � � v̂Þ ¼ diagðûÞ � diagðv̂Þ.
The direct matrix method also makes it easy to calculate the Jacobian when auxiliary variables are present. As an example,

we compute the Jacobian for the nonlinear algebraic equations that arise when solving the one-dimensional version of
(1)–(3) using a simple backwards Euler discretization in time. Using the direct matrix approach for the spatial discretization,
the nonlinear algebraic equations for ĉðnþ1Þ

þ and ĉðnþ1Þ
� that need to be solved at each time step are:
ĉðnþ1Þ
þ � DtðL � ĉðnþ1Þ

þ þ D � ðĉðnþ1Þ
þ � � ðD � /̂ÞÞÞ � ĉðnÞþ ¼ 0 ð27Þ

ĉðnþ1Þ
� � DtðL � ĉðnþ1Þ

� � D � ðĉðnþ1Þ
� � � ðD � /̂ÞÞÞ � ĉðnÞ� ¼ 0 ð28Þ

�L/̂þ ðĉðnþ1Þ
þ � ĉðnþ1Þ

� Þ ¼ 0 ð29Þ
where ĉðnÞ� are the concentrations at the current time step, L is the discretized Laplacian operator and Dt is the time step size.
It is important to mention that several of the rows in (29) will typically be replaced to impose the discretized form of the
boundary conditions for /. For illustrative purposes, let us suppose that we have simple Dirichlet boundary conditions for
/. In this situation, (29) is only imposed at interior grid points [41].

Using the simple differentiation rules from the previous section, the Jacobian of (27) with respect to ĉðnþ1Þ
þ is
I � Dt Lþ D � diagðD � /̂Þ þ D � diagðĉðnþ1Þ
þ Þ � D � @/̂

@ĉðnþ1Þ
þ

 !
; ð30Þ
where I is the identity matrix and ð@/̂=@ĉðnþ1Þ
þ Þ is the Jacobian of /̂ with respect to ĉðnþ1Þ

þ . To eliminate ð@/̂=@ĉðnþ1Þ
þ Þ from this

expression, we simply apply the differentiation rules to (29) with two rows eliminated for the boundary conditions and solve
for the interior portion of ð@/̂=@ĉðnþ1Þ

þ Þ:
@/̂

@ĉðnþ1Þ
þ

 !
int

¼ �1
�
ðLÞ�1

int ; ð31Þ
where ðLÞint is the submatrix of L that remains when all of the columns and rows corresponding to boundary grid points have
been removed. Since the boundary values of /̂ are fixed and the values of ĉðnþ1Þ

þ at the boundaries do not affect the potential in
the interior, the full Jacobian ð@/̂=@ĉðnþ1Þ

þ Þ is given by
@/̂

@ĉðnþ1Þ
þ

¼
0 � � � 0
..
.
� 1
� ðLÞ

�1
int

..

.

0 � � � 0

264
375; ð32Þ
where we have assumed that the first and last grid points correspond to boundary points. It is important to recognize that
the form for ð@/̂=@ĉðnþ1Þ

þ Þ in (32) is specific to problems with Dirichlet boundary conditions for /. For other boundary
conditions, the inversion of the equation for ð@/̂=@ĉðnþ1Þ

þ Þ generally leads to different forms for the Jacobian.
The Jacobian for (27) can now be explicitly computed by substituting (32) into (30). The similar expression for the

Jacobian of (28) is obtained using an analogous procedure. Using the direct matrix approach, we have reduced the calculation
of the Jacobian to OðN3Þ (cost of matrix-inversion and matrix–matrix multiplies) compared to the OðN4Þ cost for computing a
numerical Jacobian for high-order spatial discretizations. It is worth pointing out that in this example, the Jacobian for the
concentrations does not depend explicitly on / because the Poisson equation is linear. Thus, in contrast to a numerical
Jacobian calculation, there is no need to solve for / in order to compute the analytical Jacobians for (27) and (28). For general
problems, the Jacobian may depend on the auxiliary variable, so it might be necessary to solve the constraint equation.
However, because only one solve for the auxiliary variables is required with the direct matrix method, the cost of computing
the Jacobian is still dramatically reduced compared to using finite differences.

2.4. Computational performance

In general, using the direct matrix method to compute a Jacobian is faster than calculating a numerical Jacobian. As men-
tioned in the previous section, the performance difference is expected to be large when auxiliary variables are involved in the
expression of the residual. However, the direct matrix method yields higher performance even for problems where the resid-
ual is relatively simple.
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Fig. 1. Comparison of the computational performance of direct matrix method (circles) and numerical Jacobian computed using MATLAB numjac()

function (squares) for the 1D electrochemical thin-film problem (Section 3.1) and the 2D metal colloid sphere problem (Section 3.2). In these figures, N is
the total number of grid points in the computational mesh. The data for these graphs were generated on a 2.4 GHz MacBook Pro with 4 GB of RAM. Note that
for the 2D problem, no numjac() data is available for the largest grid size because the system ran out of memory.
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Fig. 1 compares the performance of the direct matrix method against the MATLAB numjac() function for the two example
problems discussed in Section 3. As we can see, the direct matrix method is at least an order of magnitude faster for both the
1D and 2D problems. For the 2D problem, the direct matrix method also shows superior scaling with the grid size. To ensure
a fair comparison, we vectorized the residual calculation to minimize the number of function calls required by numjac()

and avoided the use of unnecessary matrix multiplications,5 which benefited both methods. Matrix–matrix multiplications
are especially detrimental for the direct matrix method because they can worsen the scaling of the Jacobian construction
time with grid size to the point where the numerical Jacobian is faster to compute. For instance, in the left graph in
Fig. 1, a Jacobian computed using the direct matrix method with explicit matrix–matrix multiplications take OðN3Þ time,
which negates the performance benefits of the method compared with a numjac() implementation before N even reaches
1000.

In addition to avoiding matrix–matrix multiplication, it is important to use sparse matrices when possible. For problems
in more than one space dimension that are discretized on structured grids, sparse matrices are produced when Kronecker
products with identity matrices are used to construct differentiation matrices even if the 1D differentiation matrices are
dense. The benefit of using sparse matrices when computing the Jacobian using the direct matrix method is demonstrated
in the right graph in Fig. 1. For that 2D problem, there are OðN1=2Þ grid points in each coordinate direction. Because a pseudo-
spectral discretization is used, the partial differential operators all have OððN1=2Þ2N1=2Þ ¼ OðN3=2Þ elements, which explains
the scaling observed in the figure.

2.5. Relationship to the Newton–Kantorovich method

The direct matrix method for computing the Jacobian of discretized integro-differential equations is closely related to the
calculation of the Fréchet derivative6 used in the Newton–Kantorovich method [7,29] (also known as quasilinearization [20]).
The basic idea behind solving nonlinear integro-differential equations using the Newton–Kantorovich method is to carry out
Newton’s method in function space. For each Newton iteration, we compute the Fréchet derivative of the integro-differential
equation in function space and numerically solve the resulting linear integro-differential equation for the correction to the cur-
rent iterate of the solution. Essentially, the Newton–Kantorovich method reverses the order of (1) discretization of the contin-
uous problem and (2) Newton iteration. Because the equations to be solved during each Newton iteration is linear, there is no
need to compute a Jacobian of the discretized equations.

An important feature of the Newton–Kantorovich method is that the numerical discretization used to solve the linearized
equation during each Newton iteration can, in principle, be completely independent of the discretization used to compute
the residual of the nonlinear integro-differential equation. This freedom can affect the convergence rate of the method
depending on the degree to which the discretized form of the linearized problem approximates the Jacobian of the discret-
ized residual equation.

Because the direct matrix method begins with a discrete equation possessing the same mathematical structure as the
continuous residual equation, it produces a Jacobian that is a discrete analogue of the Fréchet derivative for the continuous
integro-differential equation. Unlike the Newton–Kantorovich method, however, the direct matrix method produces the un-
ique Jacobian associated with the particular choice of discretization for the residual of the nonlinear integro-differential
equation. The freedom to independently choose the numerical discretizations for the residual equation and the Fréchet
derivative is not present in the direct matrix method. As a result, given a numerical discretization for the residual equation,
5 For example, we express matrix-vector products of the form diagðûÞ � v̂ as component-wise multiplication of two grid functions û: � v̂ .
6 Recall that the Fréchet derivative for nonlinear functionals is the generalization of the Jacobian for nonlinear functions over finite-dimensional spaces

[7,33,40]. For intuition, Ortega and Rheinboldt provide a nice discussion of Fréchet derivatives in the context of finite-dimensional spaces [36].
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the direct matrix method can be viewed as a way to generate the optimal discretization for the linearized equation that
arises during each Newton iteration of the Newton–Kantorovich method.

3. Applications

In this section, we apply the direct matrix method to two real-world problems from the field of electrochemical transport
(which has recently seen a resurgence of interest [2–4,15,30,31,35,39]). As we shall see, these equations, while complicated,
are straightforward to solve using Newton’s method and the direct matrix method.

3.1. Electrochemical thin-films

Analysis of 1D electrochemical systems leads to an example of a nonlinear integro-differential equation. For steady-state
electrochemical thin-films made up of a dilute solution of symmetric binary electrolyte with faradaic reactions at the sur-
faces of the thin-film [2,15], the electric field, E, satisfies the second-order differential equation.
�2 d2E

dx2 �
1
2

E3

 !
� 1

4
ðc0 þ jðxþ 1ÞÞE� j

4
¼ 0 ð33Þ
on the domain ð�1;1Þ subject to boundary conditions that represent the kinetics of electrode reactions
� kcðcð1Þ þ qð1ÞÞ þ jr � j ¼ 0 ð34Þ
kcðcð�1Þ þ qð�1ÞÞ � jr � j ¼ 0; ð35Þ
where c is the average ion concentration, q is the charge density, j is the current density flowing through the thin-film and
�; kc and jr are physical constants. The average ion concentration, cðxÞ and charge density, qðxÞ, may be written in terms of the
electric field as
cðxÞ ¼ c0 þ jðxþ 1Þ þ 2�2E2; qðxÞ ¼ 4�2 dE
dx
: ð36Þ
Finally, c0 arises from the imposition of an integral constraint on the ion concentration and is given by
c0 ¼ ð1� jÞ þ �2 2Eð1Þ � 2Eð�1Þ �
Z 1

�1
E2dx

� �
: ð37Þ
We can solve this set of equations via Newton’s method using a systematic application of the direct matrix method. To
discretize the equations, we use a pseudospectral method based on the Chebyshev grid on the interval ½�1;1�. The differen-
tiation matrix, D, for this computational grid is just the standard differentiation matrix for the Chebyshev grid [7,21,41]. For
numerical integration, we use the Clenshaw–Curtis quadrature weights [41], which we denote by the row vector w. The
quadrature weights are used to construct a quadrature matrix, Q, which is the analogue of the differentiation matrix:
Q ¼ ½wT ;wT ; . . . ;wT �T . When a grid function f is multiplied by Q, the result is a vector where all entries are equal to the numer-
ical approximation of the integral of f.

With these discrete operators, we can put (33) into matrix-vector form:
�2 D2 � Ê� 1
2

Ê � ^3
� �

� 1
4
ðĈ0 þ jðxþ 1ÞÞ � �Ê� j

4
¼ 0 ð38Þ
with
Ĉ0 ¼ ð1� jÞ þ �2ð2Ê1 � 2ÊN � Q � ðÊ � ^2ÞÞ; ð39Þ
where we have chosen to order the indices so that x1 ¼ 1 and xN ¼ �1. The boundary conditions are imposed by replacing the
discrete equations corresponding to x1 and xN with
� kcðbc0 þ 2jþ �2ð2Ê2
1 þ 4D1 � ÊÞÞ þ jr � j ¼ 0 ð40Þ

kcðĉ0 þ �2ð2Ê2
N þ 4DN � ÊÞÞ � jr � j ¼ 0; ð41Þ
where D1 and DN are the rows of the differentiation matrix corresponding to x1 and xN , respectively and ĉ0 is a single com-
ponent of Ĉ0.

The Jacobians for the left-hand side of these discrete equations are now easily computed. Applying the differentiation
rules from Section 2, the Jacobian for the interior grid points is
Jint ¼ �2 D2 � 3
2

diagðÊ � ^2Þ
� �

� 1
4

diagðĈ0 þ jðxþ 1ÞÞ � 1
4

diagðÊÞ � @Ĉ0

@Ê
ð42Þ
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@Ê
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2 0 � � � 0 �2

264
375� 2Q � diagðÊÞ

0B@
1CA ð43Þ
The Jacobian for the discretized boundary conditions are similarly calculated:
J1 ¼ �kc
@ĉ0

@Ê
þ 4�2½E1 0 . . . 0� þ 4�2D1

� �
ð44Þ

JN ¼ kc
@ĉ0

@Ê
þ 4�2½0 . . . 0 EN� þ 4�2DN

� �
; ð45Þ
where
@ĉ0

@Ê
¼ �2ð½2 0 . . . 0 � 2� � 2w � diagðÊÞÞ: ð46Þ
Now that we have explicitly computed all of the components for Newton’s method, it is straightforward to write a pro-
gram to solve the nonlinear integro-differential equations for electrochemical thin-films. The MATLAB code (see supplemen-
tary online material) for solving is relatively short and runs quickly. One special issue that arises for this problem is that
continuation methods [7] are required to obtain good initial iterates for the Newton iteration at high current densities.
Fig. 2 shows the numerical solution of (33)–(35) computed using 100 grid points for various values of j. As expected, we ob-
serve geometric convergence with respect to the number of grid points (see Fig. 3). Notice that at higher current densities, we
see slower convergence rates due to the presence of greater structure in the solution.

From the perspective of computational performance, the above formulation of the Jacobian is suboptimal because it in-
cludes a matrix–matrix multiply in (42) that can be avoided. To reduce the time required to compute the Jacobian, the key
observation is that each row of @Ĉ0

@Ê
is equal @ĉ0

@Ê
. Therefore, diagðÊÞ � @Ĉ0

@Ê
is more efficiently computed as the Kronecker product

of Ê and @ĉ0
@Ê

. The evaluation of the residual can also be improved by recognizing that all of the elements of Ĉ0 are equal to ĉ0,
but this optimization has a far smaller impact than the reformulation of the Jacobian.
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Solution of electrochemical thin-film Eqs. (33)–(35) computed using 100 grid points with � ¼ 0:01; kc ¼ 10 and jr ¼ 10 for j ¼ 1:5 (solid), j ¼ 1:0
and j ¼ 0:5 (dot-dash).
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Plots of the absolute value of the spectral coefficients, an , for the numerical solution of the electrochemical thin-film equations with j ¼ 1:5 (solid),
(dash) and j ¼ 0:5 (dot-dash) as a function of the basis function degree. Note that the convergence rate as a function of number of grid points is
ric. The spectral coefficients were calculated from a numerical solution generated using 250 grid points to make the roundoff plateau more apparent.
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3.2. Double layer charging of metal colloid sphere at high applied electric fields

Analysis of double layer charging for colloid systems subject to applied electric fields gives rise to nonlinear differential
equations in multiple space dimensions with complicated boundary conditions. We will use this problem to demonstrate the
ease with which the direct matrix method handles complicated boundary conditions in more than one space dimension. In
particular, it illustrates how decomposition of differential operators into interior and boundary pieces can simplify compu-
tation of the Jacobian for the discretized equations.

In the electroneutral limit [2,34,37], the steady-state governing equations for systems composed of symmetric binary
electrolyte are [16]
r2c ¼ 0 ð47Þ
r � ðcr/Þ ¼ 0; ð48Þ
where c is the average ion concentration and / is the electric potential. For metal colloid surfaces, the appropriate boundary
conditions are [16,17]
0 ¼ �rs � ðqrs ln c þwrs/Þ � c
@/
@n

ð49Þ

0 ¼ �rs � ðwrs ln c þ qrs/Þ �
@c
@n

ð50Þ

q ¼ �2
ffiffiffi
c
p

sinhðf=2Þ ð51Þ

w ¼ 4
ffiffiffi
c
p

sinh2ðf=4Þ ð52Þ

v � / ¼ fþ 2d
ffiffiffi
c
p

sinhðf=2Þ ð53Þ
where q;w and f are surface field variables related to the boundary layer structure and v and d are physical parameters of the
system. As a model problem, we solve these equations for a metal colloid sphere subjected to a uniform applied electric field
of strength E in the z-direction. To avoid infinite values of the electric potential, the numerical model is formulated in terms
of w � /þ Ez, the deviation of the electric potential from that of the uniform applied field.

While this problem may seem daunting, it is straightforward to obtain a solution numerically by using Newton’s method
with an analytical Jacobian computed using the direct matrix method. Taking advantage of azimuthal symmetry, we discret-
ize the equations in spherical coordinates on a 2D pseudospectral grid that is the tensor product of grids in the radial and
polar angle directions. We use a shifted semi-infinite rational Chebyshev grid [7] in the radial direction and a uniformly
spaced grid for the polar angle direction. The required differentiation matrices are constructed using Kronecker products
and the boundary conditions are handled using restriction and prolongation matrices as discussed in Section 2.1.1.

To facilitate the formulation of the matrix-vector representation of the equations, let us fix our notation. Let Dr and Dh be
the radial and angular contributions to the discrete divergence operator, Gr and Gh be the radial and angular components of
the discrete gradient operator and L be the discrete Laplacian operator. Also, let n and s subscripts denote normal and tan-
gential derivative operators at the surface of the sphere.

For the purpose of discussion (and implementation), it is convenient to decompose the discrete differential operators into
pieces that correspond to contributions from finite and infinite grid points. For example, L can be decomposed into Lf and L1

which respectively account for the contributions to the Laplacian operator from finite and infinite grid points; that is,
L � ĉ ¼ Lf � ĉf þ L1 � ĉ1, where ĉf and ĉ1 are the concentration values at finite and infinite grid points respectively. Similarly,
to impose the boundary conditions, we use derivative operators that act only on surface values. Surface operators and surface
field values will be denoted with superscripts s and subscripts s, respectively. Finally, to refer to values at interior grid points
(i.e., finite grid points that are not on the surface of the sphere), we use the subscript i.

In this notation, the discretized form of the bulk Eqs. (47) and (48) are given by
0 ¼ F1 � Lf � ĉf þ L1 � c1 ð54Þ
0 ¼ F2 � Df

r � ½ĉf � �ðGf
r � ŵf � E cos hÞ� � D1r � ðc1 � � E cos hÞ þ Df

h � ½ĉf � � ðGf
h � ŵf þ E sin hÞ� þ D1h � ðc1 � � E sin hÞ: ð55Þ
In these equations, the unknowns are the values of the c and w at finite grid points; values at infinity are specified by the
boundary conditions and so are known quantities (which is why c1 does not have a hat accent and w1 ¼ 0 does not show up
at all). In discretized form, the boundary conditions on the surface of the sphere are
0 ¼ H1 � �Ds � ½q̂ � �ðGs � ln ĉsÞ þ ŵ � � ðGs � ŵs � Gs � E cos hÞ� � cs � � ðGf
n � ŵf þ E cos hÞ ð56Þ

0 ¼ H2 � �Ds � ½ŵ � �ðGs � ln ĉsÞ þ q̂ � � ðGs � ŵs � Gs � E cos hÞ� � ðGf
n � ĉf þ G1n � c1Þ: ð57Þ
Closure for these equations is given by using (51) and (52) to relate q̂ and ŵ to the zeta-potential and using (53) to com-
pute the zeta-potential from / and ĉs.

The direct matrix method makes it straightforward to derive the analytical Jacobian for the system of Eqs. (51)–(57). The
derivatives of F1 and F2 with respect to the unknowns ĉf and ŵf are easily calculated:
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@F1

@ĉf
¼ Lf ð58Þ

@F1

@ŵf

¼ 0 ð59Þ

@F2

@ĉf
¼ Df

r � diagðGf
r � ŵf � E cos hÞ þ Df

h � diagðGf
r � ŵf þ E sin hÞ ð60Þ

@F2

@ŵf

¼ Df
r � diagðĉf Þ � Gf

r þ Df
h � diagðĉf Þ � Gf

h ð61Þ
The derivatives for the discretized boundary conditions are more complicated because q̂; ŵ and ĉs implicitly depend on
the unknown variables and because surface grid points must be treated differently than interior grid points. However, a sys-
tematic application of the differentiation rules in Section 2.2 yields the analytical Jacobian directly in matrix form:
@H1

@ĉs
¼ �

2
Ds � diagðq � =cs � �ðGs � ln csÞÞ � �Ds � diag

ffiffiffiffi
cs
p
� � coshðf=2Þ � � @f

@cs
� �ðGs � ln csÞ

� �
þ �Ds � diagðqÞ � Gs � diagð1 � =csÞ þ

�
2

Ds � diagðw � =cs � �ðGs � ws � Gs � E cos hÞÞ

þ �Ds � diag
ffiffiffiffi
cs
p
� � sinhðf=2Þ � � @f

@cs
� �ðGs � ws � Gs � E cos hÞ

� �
� diag Gf

n � wf þ E cos h
� �

ð62Þ
@H1

@ci
¼ 0 ð63Þ

@H1

@ws
¼ ��Ds � diag

ffiffiffiffi
cs
p
� � coshðf=2Þ � � @f

@ws
� �ðGs � ln csÞ

� �
þ �Ds � diagðwÞ � Gs

þ �Ds � diag
ffiffiffiffi
cs
p
� � sinhðf=2Þ � � @f

@ws
� �ðGs � ws � Gs � E cos hÞ

� �
� diagðcsÞ � Gs

n ð64Þ
@H1

@wi
¼ �diagðcsÞGi

n ð65Þ

@H2

@ĉs
¼ �

2
Ds � diagðw � =cs � �ðGs � ln csÞÞ þ �Ds � diag

ffiffiffiffi
cs
p
� � sinhðf=2Þ � � @f

@cs
� �ðGs � ln csÞ

� �
þ �Ds � diagðwÞ � Gs � diagð1 � =csÞ þ

�
2

Ds � diagðq � =cs � �ðGs � ws � Gs � E cos hÞÞ

� �Ds � diag
ffiffiffiffi
cs
p
� � coshðf=2Þ � � @f

@cs
� �ðGs � ws � Gs � E cos hÞ

� �
� Gs

n ð66Þ
@H2

@ci
¼ �Gi

n ð67Þ

@H2

@ws
¼ �Ds � diag

ffiffiffiffi
cs
p
� � sinhðf=2Þ � � @f

@ws
� �ðGs � ln csÞ

� �
þ �Ds � diagðqÞ � Gs

� �Ds � diag
ffiffiffiffi
cs
p
� � coshðf=2Þ � � @f

@ws
� �ðGsws � Gs � E cos hÞ

� �
ð68Þ
@H2

@wi
¼ 0 ð69Þ
where
@f
@ws
¼ � 1

1þ d
ffiffiffiffi
cs
p

coshðf=2Þ ð70Þ

@f
@cs
¼ � d sinhðf=2Þffiffiffiffi

cs
p

1þ d
ffiffiffiffi
cs
p

coshðf=2Þ½ � : ð71Þ
The Jacobian for the system of equations is obtained by assembling these pieces:
J ¼

@F1
@ĉ

@F1
@ŵ

@F2
@ĉ

@F2
@ŵ

@H1
@ĉ

@H1
@ŵ

@H2
@ĉ

@H2
@ŵ

26666664

37777775; ð72Þ



Fig. 4. Solution of Eqs. (47)–(53) computed using 30 grid points in both the radial and polar angle directions with E ¼ 10; v ¼ 0; � ¼ 0:01 and d ¼ 1. The
scale parameter is set to 0.5 for the shifted rational Chebyshev grid.
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where the Jacobians for H1 and H2 are constructed from (62)–(69) using restriction operators. For instance,
@H1

@ĉ
¼ @H1

@ĉs
� Rs þ

@H1

@ĉi
� Ri; ð73Þ
where Rs and Ri are restriction operators for surface and interior grid points, respectively. While the formulas may look com-
plicated to program, the use of MATLAB notation makes it trivial to implement a solution in MATLAB (see supplementary
online material).

Fig. 4 shows numerical solutions obtained using the above residual and Jacobian formulas. As for the electrochemical
thin-film example, continuation is required to obtain good initial iterates for the Newton iteration at high values of the ap-
plied electric fields. Using pseudospectral grids and the analytical Jacobian, the solution is obtained very quickly, requiring
only a few Newton iterations for each continuation stage (and less than a minute of computation time on a 2.4 GHz MacBook
Pro).

4. Conclusions

In this article, we have presented a direct matrix method for calculating analytical Jacobians for discretized, nonlinear
integro-differential equations. Because this method is based on simple matrix-based differentiation rules, it is less tedious
and less error-prone than other approaches for computing analytical Jacobians. The power of the method originates precisely
from the convenience of the notation and its formulation as a simple set of differentiation rules. These features of the method
make it particularly useful for application-oriented computational scientists. Furthermore, because the direct matrix method
yields the Jacobian in matrix form, it is straightforward to implement the analytical Jacobian in code using languages that
support vectorized computation (e.g. MATLAB and Fortran 95).

One interesting possibility that the direct matrix method presents is development of high-level automatic differentiation
tool for discretized nonlinear integro-differential equations. In contrast to traditional automatic differentiation methods
[23,25] which operate at the level of individual scalar operations, automatic differentiation methods based on the direct ma-
trix method would operate on the discrete differential operators associated with the continuous differential equation. Such
an automatic differentiation tool could be useful for completely eliminating the need for a researcher to compute the Jaco-
bian of discretized nonlinear integro-differential equations by hand.
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